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FLOW NEAR THE CRITICAL LINE IN THE 
GAS-DYNAMIC MODEL OF STELLAR WIND 

WITH THERMAL COND~C~ITY~ 

E. KH. SACMAN and 1. S. SHIKIN 

Moscow 

A onedimeusianal, time-independent, spherically symmetric model of stellar wind is studied within the 
framework of gas dynamh. It is assumed that the energy transfer in the external stellar atmosphere 
occnrs by electron tbermzd conduction. Tbe form of the &tical fine on which the transition from 
subsonic to supersonic Bow occurs aod the tppes of singular points and their connection with the 
directions of separatriccs is studied in detail. The stability of the solutions with respect to perturbations 

in the neigbbourbood of singular points is considered, using the method suggseted in (11. 

THE PROBLBM was first suggested in this formation in [2] for two simplest cases: the adiabatic mode, that 
is easentialiy described by Parker’s model [3J, where, instead of the heat flux equation a pofitxopic law was 
introduced, and the mode for which the total energy flow is equal to zero. For the latter one of the 
asymptotic forms at infinity was found. For the specified parameters the critical line was constructed and 
numerical calculations of the directions of separatrices were carried out [4]. 

L The model considered is based on the foBowing assumptions: the flow is one-d~e~sional, time- 
independent and spherically symmetric, the flow velocity has only a radial component, and all the 
parameters of the flow (the velocity u, pressure p, density p and temperature T) are the functions of only 
the space coordinate t, which is the distanoer from the centre of a star. The energy in the expanding stellar 
corona is transferred by electron thermal conduction. Viscosity effects and the infhtence of the magnetic 
field are not considered. The gas is assumed to be ideal with constant specific heats, and a ratio of the 
specificheats r=j& 

With these assumptions the system of dynamic equations of the stellar atmosphere in dimensionless 
variables reduces to the following form 

T --_, X=cM,mi~ A= 
ttt.t42 

‘F=--, \Ir- 
K(TO F3M.m~ &Pi 

To 2kTo 2kTor ’ 2&2To ’ ‘- =- a&r@ 

Here Kg*) = P&=, T, is the temperature at the base of the corona, G is the gravi~t~o~al~~t~t, M, 
is the stellar mass (assumed to be constant, as the contribution of the upper atmosphere to the stellar 
mass is mdmportant), c is the mass flow rate constant, E, is the constant value in the energy integral, k is 
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Boltzmann’s constant, m, is the ion mass, and k is the thermal conductivity which depends on the 

temperature as [5] 

K = tc,T”’ = 6 x 10-‘2T5’2 J/(m s K) 

and serves as the electron thermal conductivity (the ion thermal conductivity, being of the order of 

m, lm,, where m, is the electron mass, is negligibly small). 

2. To study the singular points we will introduce a fictitious parameter h of dimensionless time t, 
defined by the equation 

dl/dh=[hA&(~-T)]-’ 
(2.1) 

As a result, we have the following system of three ordinary differential equations 

(2.2) 

The substitution (2.1) eliminates singularities in system (1.1) in which hA~~‘~(w -2) = 0. 

From the total set of singular points we select the singular points (z,, w,, h,) that do not lie in the 
coordinate planes. These points are defined by the equations 

WC =‘Tc. ~,(~~,E~)=~(~,,~~)~[T?(Z,,E,)-A~~I~ 

(<&,&,)=(6q+A+-2&J/4) (2.3) 

and are traditionally called sonic though the equality v= z means that mp21(2kT)= 1 or the Mach 
number M=4(lly)cl. 

The notation h, = h,(r,, E,) emphasizes the essential dependence of h on a,. For E, = 0 the values of 

h are defined on the half-line ‘c, E [0, +), For E, > 0 this is z, E [r:, +-), where 2, is a unique solution 

of the equation r(z,, E,)= d(A)tz” when z, a0. Higher E, values correspond to larger t, values. 

Moreover, for a_ = 0 the function h, can take any value from zero to infinity. For E, > 0 a lower limit of 
K exists which corresponds to the greater value of E,. Thus for a, > 0 a transition through a singular 

point cannot occur too far from the centre of a star. In this case, the flow temperature must be sufficiently 

high. 
Differentiation of the function &(z,, E,) with respect to the parameter E, reveals that the curve 

corresponding to large E, is enclosed within the curve corresponding to lower &_.The qualitative 

behaviour of the critical lines is shown in Fig. 1. Curves 1, 2 and 3 correspond to the functions h,(r,, 0), 

h,(z,, E,) (E, > 0) and &(z,, EL) (E: > L), respectively. 

3. To find the nature of the singular points it is necessary to consider the characteristic matrix of 

system (2.2) 

In this case, we assume that (x1, x2, xg) is the vector (r, v, h). We find the characteristic roots of this 

matrix (zi, GQ, z,), that are the eigenvalues of system (2.2) and defined by the equation det II A/ - & II= 0 

or 

z(2-G*z+G,)=O 

G, = (2q + A&h, + 2Az,= Y (3.1) 
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The singular points (2.3) fill in the continuous set which is a manifold of unit dimensions. Thus [6], at 
such singular points system (2.2) has one zero eigenvalue. In this case, the singular points (2.3) are 
characterized as two-diiensiooal singular points if the set of singular points (2.3) is not degenerate, i.e. 
when almost at any singular point of this set there are two eigenvalues of system (2.2) with non-zero real 
parts. Hence it is necessary to study the equation corresponding to the case when the expression in 
parentheses iu Eq, (3.1) is equal to zero. 

If the eigenvalues z, and zz (the roots of this equation) are complex conjugate, i.e. the diicriminant D 
of the equation is negative, then for such parameters the singular point is a focus. If the eigenvalues are 
real, different and have like signs (for D > 0, G1 > 0), the singular points arc nodes. If the eigenvalues are 
real but have unlike signs (for D > 0, G1 > 0), the singular points are saddles. In the case of D = 0 the 
singular points are degenerate nodes. When G1 = 0 they are degenerate saddles. 

The relative position of the curves D= 0, G1 = 0 and the critical lines (the dashed curve) for A =4fXI, 
that corresponds to the parameters of the solar wild, is shown in Fig. 2. 

If the singular point situated on the line &Jr,, a,) falls into the domain 1, this point is a focus. The 
integral curves in the neighbourhood of such a singular point have no physical meaning. If the singular 
point falls into the domain 2, the node corresponds to it. At the intersection of domains 1 and 2 the 
singular points will be degenerate nodes. In domain 3 the singular points are nodes. At the intersection of 
domains 2 and 3 these points will be degenerate saddles. 

4. To define the separatrices at the singular points (r,, \y,, h,) it is necessary to find the coefficients a 
and p of the decomposition 

7-q =a(&-h,), ~-z=~(X-kc) f4.1) 

When S > 0 the transition from supersonic to subsonic flow occurs when the radial distance increases, and 
fl> 0 corresponds to the transition from subsonic to supersonic flow. 

Substituting expressions (4.1) into system (1.1) and considering the infi~t~~al terms of the zeroth 
order with respect to X-h, we obtain two expressions for a that are identical in accordance with (2.3) 

A&i=21, -62’, +2a,, a=l-2r, /h, (4.2) 

Therefore, in order to obtain expressions for fi it is necessary to consider a higher-order term of the 
deposition of r-r, up to and including the quadratic term. 
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This means that the integral curves in the neighbourhood of the singular point do not lie in a plane 

7-‘c, =a(h-h,)+6(h-h,)2 

Substituting expressions (4.3) and the second expression of (4.1) and then considering the infinitesimal 

terms of the first order with respect to h-L, we obtain two algebraic equations for g and 6. Eliminating 6 

from thii system we obtain a quadratic equation for j3 

A&/3’ -A,T,‘G~~+G, /(A+)=0 

Since the discrimination of Eq. (4.4) is equal to kt,zpD the singularities such as a focus correspond to 

the complex conjugate roots of this equation. When the roots of Eq. (4.4) are real and have unlike signs 
the singularities are saddle points. In this case, one of the separatrices passes from the subsonic to the 
supersonic domain, and another passes from the supersonic to the subsonic domain. 

If the roots are real and have like signs, the singular points are nodes. Since the sum of the roots is 

equal to G, l(Azj'%,) and at D > 0 and G1 > 0 the function G, is positive, both of the separatrices passing 

through the node singular point correspond to the transition from supersonic to subsonic flow. 
In the case of a degenerate node and a degenerate saddle, the only separatrix passing through any such 

a singular point corresponds to the transition from supersonic to subsonic flow when the radial distance is 

increased. 
Hence, the transition from subsonic to supersonic flow occurs only at the saddle point along one of the 

separatrices. 

5. Among the whole set of the integral curves in the neighbourhood of the \v = r plane the transition 

from subsonic to supersonic flow is only possible at saddle singular points with one separatrix at every 
such point. It is precisely this case that occurs in stellar and solar wind. 

In the neighbourhood of singular points such as a focus the solutions are not realizable physically since 

they are not continuous with respect to A 
Since the node singular points have separatrices passing from the supersonic to the subsonic domain, 

all the integral curves in the neighbourhood of such a point are unstable to perturbations in the 
neighbourhood of the singular point [l]. For the saddle singular points only one integral curve is stable to 
perturbations in the neighbourhood of the singular point, namely, the curve which is a separatrix for the 
transition for subsonic to supersonic flow. All the remaining integral curves are absolutely unstable. 
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